QRCA Reaktor Tangki Kontinu Agitated untuk QR

CONTINUOUS STIRRED TANK REACTOR FOR QR - QRCA

SISTEM INOVATIF

The Continuous Stirred Tank Reactor for QR, "QRCA", designed by EDIBON, provides a controlled environment for detailed kinetic study of homogeneous liquid-liquid chemical reactions.

Lihat uraian umum

BERITA TERKAIT

GAMBARAN UMUM

The Continuous Stirred Tank Reactor for QR, "QRCA", designed by EDIBON, provides a controlled environment for detailed kinetic study of homogeneous liquid-liquid chemical reactions.

This type of reactor, also known as CSTR (Continuous Stirred-Tank Reactor), is characterized by having the reactants in a tank where they are constantly stirred.

Through a series of practices, it allows for the determination of ionic conductivity, obtaining the reaction order with respect to different compounds, calculating rate constants, formulating rate equations, and analyzing the variation of kinetics with temperature. Additionally, it offers the possibility to compare theoretical and experimental results, study mixing effects, and perform operations both in batch and continuous modes. With the ability to calibrate temperature and conductivity sensors, the "QRCA" is a comprehensive and versatile unit for training and research in chemical engineering, contributing to the advancement of knowledge in this field.

To work with this reactor, the Base and Service Unit, "QUS", is required, which supplies the necessary reagents and thermostatic water for proper operation.

LATIHAN DAN PRAKTEK PEDOMAN

LATIHAN PRAKTIS YANG DIANDAL TERMASUK DALAM PANDUAN

  1. Determination of the ionic conductivities.
  2. Batch operation. Obtaining of the reaction order respect to ethyl- Acetate. Initial velocity method.
  3. Batch operation. Obtaining of the reaction order respect to sodium hydroxide. Initial velocity method.
  4. Batch operation. Velocity Constant Computation. Constant sodium hydroxide initial concentration.
  5. Batch operation. Velocity Constant Computation. Constant ethylacetate initial concentration.
  6. Velocity equation formulation.
  7. Batch operation. Variation of the kinetic constant with temperature. Arrhenius Equation.
  8. Batch operation. Theoretical and experimental conversion comparative. Deviation from ideality.
  9. Batch operation. Mixture effects.
  10. Continuous operation.
  11. Continuous operation. Mixture effects.
  12. Conductivity measurement system: conductimeter.
  13. Variation of conversion with residence time.
  14. Residence time distribution.
  15. Determination of the reaction rate constant.

BARANG YANG DIBUTUHKAN

KUALITAS

LAYANAN PURNA JUAL

Meminta informasi