THIBAR44B Rerversível Bomba de Calor + Ar Condicionado + Refrigeração com 4 Condensadores e 4 Evaporadores (Água/Ar)

RERVERSIBLE HEAT PUMP + AIR CONDITIONING + REFRIGERATION WITH 4 CONDENSERS AND 4 EVAPORATORS (WATER/AIR) - THIBAR44B

SISTEMAS INOVADORES

The Rerversible Heat Pump + Air Conditioning + Refrigeration with 4 Condensers and 4 Evaporators (Water/Air), "THIBAR44B", has as aim introduce the student to the study of the heat pumps, air-conditioning and cooling, as well as to analyze and determine the operation typical parameters of the unit depending on the two types of fluids used in the evaporation and condensation processes (air and water).

Ver descrição geral

NOTÍCIAS RELACIONADAS

Descrição Geral

The Rerversible Heat Pump + Air Conditioning + Refrigeration with 4 Condensers and 4 Evaporators (Water/Air), "THIBAR44B", has as aim introduce the student to the study of the heat pumps, air-conditioning and cooling, as well as to analyze and determine the operation typical parameters of the unit depending on the two types of fluids used in the evaporation and condensation processes (air and water).

This unit can have different applications, depending on the type of cold focus or hot focus used in the evaporation and condensation processes.

This unit consists of the following stages:

  • Compression: this stage begins when the coolant enters the compressor. This coolant is compressed, increasing its pressure and temperature. To measure these variables the unit includes a manometer and a temperature sensor.
  • Condensation: the coolant has two possibilities, to be diverted towards the air condenser or towards the water condenser. The coolant transfers its heat to the water (or to the air) that flows through the condenser. At the end of this stage, the pressure and temperature of the coolant are measured with a manometer and a temperature sensor.
  • Expansion: the coolant flows through an accumulator and a filter, to retain particles of condensate, and a flow meter. Then it is directed to the expansion valve, which causes a pressure and temperature drop in the coolant. At the end of this stage the pressure and temperature of the coolant are measured with a manometer and a temperature sensor.
  • Evaporation: the coolant has two possibilities, to be diverted towards the air evaporator or towards the water evaporator. The coolant absorbs the heat of the water (or the air) that flows through the evaporator. At the end of this stage the pressure and temperature of the coolant are measured with a manometer and a temperature sensor. Finally, the coolant passes through a liquid separator to retain liquid particles before being directed to the compressor.

The unit includes a high pressure switch to avoid overpressure in the unit and a four-way valve to change the direction of the coolant.

The four-way valve (or cycle inversion valve) allows to obtain different combinations of Heat Pump, Air Conditioning and Cooling in only one unit.

EXERCÍCIOS E PRÁTICAS GUIADAS

EXERCÍCIOS PRÁTICOS GUIADOS INCLUÍDOS NO MANUAL

  1. Determination of COP (coefficient of performance) of a heat pump. Water as heat source. (Water-water heat pump).
  2. Determination of COP (coefficient of performance) of a heat pump. Air as heat source. (Water-air heat pump).
  3. Determination of COP (coefficient of performance) of a heat pump. Air as heat source. (Air-air heat pump).
  4. Determination of COP (coefficient of performance) of a heat pump. Water as heat source. (Air-water heat pump).
  5. Preparation of performance curves of the heat pump with different inlet and outlet temperatures. Water as heat source. (Water-water heat pump).
  6. Preparation of performance curves of the heat pump at different inlet and outlet temperatures. Air as a heat source. (Water-air heat pump).
  7. Preparation of performance curves of the heat pump with different inlet and outlet temperatures. Water as heat source. (Air-water heat pump).
  8. Preparation of the performance curves of the heat pump with different inlet and outlet temperatures. Air as heat source. (Air-air heat pump).
  9. Lay out of the steam compression cycle in a diagram P-H and comparison with the ideal cycle. Water as heat source. (Water-water heat pump).
  10. Lay out of the steam compression cycle in a diagram P-H and comparison with the ideal cycle. Air as heat source. (Water-air heat pump).
  11. Lay out of the steam compression cycle in a diagram P-H and comparison with the ideal cycle. Water as heat source. (Air-water heat pump).
  12. Lay out of the steam compression cycle in a diagram P-H and comparison with the ideal cycle. Air as heat source. (Air-air heat pump).
  13. Preparation of the performance curves of the heat pump based on the properties of the refrigerant and at different condensation and evaporation temperatures. Water as heat source. (Water-water heat pump).
  14. Preparation of the performance curves of the heat pump based on the properties of the refrigerant and at different condensation and evaporation temperatures. Air as heat source. (Water-air heat pump).
  15. Preparation of the performance curves of the heat pump based on the properties of the refrigerant and at different condensationand evaporation temperatures. Water as heat source. (Air-water heat pump).
  16. Preparation of the performance curves of the heat pump based on the properties of the refrigerant and at different condensation and evaporation temperatures. Air as heat source. (Air- air heat pump).
  17. Practices with cycle inversion.

EXERCÍCIOS MAIS PRÁTICOS A SEREM FEITOS COM A UNIDADE

  1. Properties of the refrigerant R-513a.
  2. Enthalpy-Pressure diagram for the refrigerant R-513a.

EQUIPAMENTOS SIMILARES DISPONÍVEIS

Qualidade

Serviço pós-venda

Solicitar informação