TICT Кожухотрубный теплообменник для TICC
ИННОВАЦИОННЫЕ СИСТЕМЫ
The Shell and Tube Heat Exchanger for TICC, "TICT", designed by EDIBON, provides a comprehensive environment for the study of heat transfer. It allows analysis of the overall energy balance, heat losses in parallel and counterflow configurations, as well as temperature distribution and exchanger efficiency. Furthermore, it facilitates exploration of key parameters such as Reynolds number, Prandtl number, and Nusselt number.
Расширения
ЛАБОРАТОРИИ
НОВОСТИ ПО ТЕМЕ
ОБЩЕЕ ОПИСАНИЕ
The Shell and Tube Heat Exchanger for TICC, "TICT", designed by EDIBON, provides a comprehensive environment for the study of heat transfer. It allows analysis of the overall energy balance, heat losses in parallel and counterflow configurations, as well as temperature distribution and exchanger efficiency. Furthermore, it facilitates exploration of key parameters such as Reynolds number, Prandtl number, and Nusselt number.
This unit, comprising a series of tubes through which hot water flows and a space between the inner tubes and the casing for cooling water, offers detailed practices for studying and analyzing heat transfer. These practices include overall energy balance, heat loss studies, temperature distribution, and calculation of logarithmic mean temperatures.
Additionally, the ε-NTU method is used to calculate the efficiency of the exchanger, and the influence of flow rate is investigated by analyzing Reynolds and Prandtl numbers. Nusselt number and convection heat transfer coefficients are also determined for each flow.
In summary, the Shell and Tube Heat Exchanger for TICC, "TICT", provides students, teachers, and researchers with the opportunity to delve into the fundamental principles of heat transfer in shell and tube exchangers. With its innovative design, this unit offers a detailed understanding of the process.
To work with this unit, the Base and Service Unit, "TIUS", is required, which provides key functions such as heating water using a thermostatic bath, pumping hot water, regulating and measuring the flow rates of cold and hot water, measuring the inlet and outlet temperatures of cold and hot water, as well as measuring the pressure drop in the heat exchanger.
These Computer Controlled Units are supplied with EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + a Data Acquisition Board + Computer Control, Data Acquisition and Data Management Software Packages, for controlling the process and all parameters involved in the process.
УПРАЖНЕНИЯ И ПРИМЕРЫ С ИНСТРУКЦИЯМИ
РУКОВОДСТВО ПО ПРАКТИЧЕСКИМ УПРАЖНЕНИЯМ ВКЛЮЧЕНО В РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ
- Global energy balance in the heat exchanger and the study of losses.
- Exchanger effectiveness determination. NTU Method.
- Study of the heat transfer under counter-current and co-current flow conditions.
- Flow influence on the heat transfer. Reynolds number calculation.
- Sensors calibration.
БОЛЬШЕ ПРАКТИЧЕСКИХ УПРАЖНЕНИЙ ДЛЯ РАБОТЫ С УСТРОЙСТВОМ
- Study of the hysteresis of the flow sensor.
Other possibilities to be done with this unit:
- Many students view results simultaneously. To view all results in real time in the classroom by means of a projector or an electronic whiteboard.
- Open Control, Multicontrol and Real Time Control. This unit allows intrinsically and/or extrinsically to change the span, gains, proportional, integral, derivative parameters, etc, in real time.
- The Computer Control System with SCADA and PID Control allow a real industrial simulation.
- This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
- This unit can be used for doing applied research.
- This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- Control of the TICC unit process through the control interface box without the computer.
- Visualization of all the sensors values used in the TICC unit process.
- By using PLC-PI additional 19 more exercises can be done.
- Several other exercises can be done and designed by the user.